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Abstract

A numerical method is developed for the simulation of solidification of solutions/alloys. The heat and species

transport equations are solved with appropriate interface conditions. The interface shape and thermal and solutal fields

are calculated in a fully coupled manner. The effects of capillarity are included in the interfacial dynamics. The present

mixed Eulerian–Lagrangian framework treats the immersed phase boundary as a sharp solid–fluid interface and a

conservative finite-volume formulation allows boundary conditions at the moving surface to be exactly applied. We first

compare the planar growth results with published one-dimensional numerical results. We then show that the method

can compute the breakdown of the solid–liquid interface due to the Mullins–Sekerka instability. The dendritic growth

of the crystals under various growth parameters is computed.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

There is continuing interest in the development of

techniques for simulation of flow and heat transfer

around immersed solid boundaries on fixed Cartesian

grids. Such methods avoid problems associated with grid

generation to conform to the shapes of the evolving

solid–liquid boundaries. This is advantageous in com-

puting flows in the presence of embedded solid bound-

aries which may be complex in shape, arranged in such a

way that the flow domain is highly convoluted, or exe-

cute motions that deform the flow domain to a very

large extent. Such fixed-grid Eulerian methods, classified

as immersed boundary [1] or immersed interface [2]

methods, may treat the embedded solid boundaries and

their interactions with the flowfield in many different

ways. A subclass of such methods, which treat the solid–

liquid boundary as sharp entities, while still employing a

Cartesian grid, has been developed in recent years by

several researchers [3–5]. This ‘‘sharp-interface’’ method

has been applied to compute the diffusion-controlled

growth of unstable phase boundaries [4–6] and fluid

flow around fixed [7] and moving [6,8] immersed solid

boundaries. This method was also shown to compute the

dendritic growth of pure materials in agreement with

morphological stability theory [6]. In each case, the

method was shown to compute the field equations to

second-order accuracy, allowing capture of unsteady

and viscous effects.

In this paper, a mixed Eulerian–Lagrangian meth-

odology is extended to include heat and species trans-

port and to track the evolution of freeze fronts in

aqueous solutions, alloys and other impure materials

where the solidification occurs from the liquid phase.

The particular application targeted by this paper is the

freezing of solutions used in the cryopreservation of cells

and tissue [9], where long-term storage of biological

material is sought by freezing at low temperatures. At

such low temperatures, physiological processes are slo-

wed or suspended, and thus the phenomena of impor-

tance are reduced to physical transport of heat, water

and solute. The primary factors controlling cell response

to freezing are the cooling rate and temperatures im-

posed on the cell. Thermodynamics of aqueous solutions

dictates that when a solution is cooled ice will precipitate

out leaving the remaining solution more concentrated

in solute (salts such as NaCl in the human cell and
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surrounding tissue [10,11], as given by the phase dia-

gram of the mixture. Therefore, as illustrated in Fig.

1(a), suppose that the cell is initially suspended in an

isotonic solution (i.e. the salt concentration in the cell

and the surrounding medium are equal). When the

mixture is cooled, due to thermodynamic effects [12], ice

will first form in the extracellular solution (Fig. 1(b)). As

the extracellular ice crystals grow, the cell finds itself in

surroundings with increasing solute concentration (i.e.

in a hypertonic medium). This non-equilibrium situation

propels water molecules out of the cell (exosmosis)

through the semi-permeable cell membrane [13], thus

shrinking (dehydrating) the cell. The key to cell survival

is the rate at which cooling is done. If cooling is too

rapid, water molecules cannot leave the cell at a rapid

enough rate; as the temperature drops ice begins to form

inside the cell (Fig. 1(d)). Thus, the intracellular ice

formation (IIF) mechanism [14–16] of cell death is im-

minent. Intracellular ice crystals damage the cell and it

will not survive the freeze-thaw process. If the cooling is

too slow, then water will leave the cell too slowly, so that

the cell will find itself in an increasingly hypertonic en-

vironment for longer durations, which again imperils the

cell. This is death due to ‘‘solution effects’’ [11]. Cell

death can be delayed/prevented by controlling the two

effects, i.e. rate of water loss from the cell and increase in

the concentration of solute (tonicity) of the surrounding

medium.

It is clear that better control of cryopreservation

processes calls for ability to quantify the freezing re-

sponse of the cell. Previous work in analysis of response

of the cell to freezing has not accounted in sufficient

detail for the extracellular solidification processes.

Typically, planar ice fronts succumb to the Mullins–

Sekerka instability [17] and assume the form of deep

cells or highly branched dendrites. Most analyses to date

[10,12,16,18] have assumed that the cell is immersed in

an extracellular solution of uniform composition, as

dictated by the (spatially uniform) temperature field via

a phase diagram. This does not represent the actual

condition experienced by a cell that is progressively en-

gulfed by a non-planar ice front, because the advancing

ice front carries ahead of it a solute boundary layer

whose extent depends on the front velocity. Therefore,

while transport of latent heat release during ice forma-

tion can be justifiably assumed to occur rapidly, the

same does not apply for solute transport.

Several experimental efforts have revealed that the

morphology of the ice that attacks the cell can assume

cellular or dendritic forms [19]. The cell survivability is

also influenced by the morphological features [20].

Kourosh et al. [21] and Koerber and coworkers [22,23]

have quantified the temperature and solutal fields that

arise when the freezing front assumes cellular mor-

phology under conditions that apply during cryotreat-

ment of cells. Such data are critical to quantify and

predict the actual conditions experienced by a cell that is

progressively engulfed by a non-planar ice front. The

advancing ice front carries ahead of it a solute boundary

layer whose extent depends on the front velocity. The

egress of water is controlled by the differences in the

solutal concentration across the cell membrane. Tak-

amatsu and Rubinsky [20] have convincingly demon-

strated the effects of such solute microsegregation in the

unfrozen solution. They showed that cells trapped in the

solute-rich interdendritic grooves in the mushy (solid–

liquid two phase) zone suffer solution effects injury.

There has been some previous work on calculating the

extent of the solute boundary layer and instability phe-

nomena in the context of freezing of solutions relevant

to cryobiology. However, these have been restricted to

one-dimensional (1-D) analyses [23–26]. Stability anal-

ysis and analytical prediction of non-planar interface

morphologies in aqueous systems has also been per-

formed [21,27]. In particular, Kourosh et al. [21] have

considered the growth of dendrites in salt solutions by

obtaining solutions of crystals in the basal and tip re-

gions and matching these solutions to obtaining a

composite representation of the growing crystal. In the

thesis by Studholme [28], propagation of a 1-D freezing

front was computed by including the instability mecha-

nism due to constitutional supercooling. However, in

order to truly understand the interaction of extracellular

ice with biological materials, particularly cells, and to

quantify the thermo-solutal environment around the cell

during freezing, direct numerical simulation of micro-

scale solidification phenomena will be of immense value.

A first step in this direction is to develop a capability to

Fig. 1. Illustration of cell death due to IIF. (a) Cell immersed in an isotonic medium. (b) Formation of extracellular ice during cooling.

(c) Ice begins to engulf the cell. Water leaves the cell causing shrinkage of cell. Nuclei form in and out of cell. (d) IIF results in cell death.
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simulate the advance of the solidification front in a

freezing aqueous solution in which the cell is suspended.

This paper describes such an effort.

The methodology described in this paper is generally

applicable to the study of solidification of impure ma-

terials, including alloys and solutions. The key feature of

the method is the sharp-interface treatment. While there

has been a great deal of progress in numerical simulation

of cellular and dendritic crystal growth in pure and

impure materials, particularly using the phase-field

method [29–32], the method presented here affords sev-

eral distinct advantages. These arise due to the fact that

the interface is treated as a sharp entity, so that:

1. The material property jumps at the interface, such as

the large jump in the solute diffusivity in passing

from the solid to the liquid are treated as discontin-

uous.

2. The solute partition coefficient determines the con-

centration gap at the solid–liquid interface and this

is explicitly supplied via the boundary conditions

at the front in calculating the solute concentration

in the two phases. Therefore no smearing of the sol-

ute field at the interface results.

3. The capillarity term is included in coupling the inter-

face temperature and species at the exact front loca-

tion (see Eq. (5) below). The coupling is effected in

such a manner that a stable implicit time-stepping

scheme is developed.

4. A conservative finite-volume formulation can be ar-

rived at, without mixing the phases in each control

volume, i.e. the solid and liquid regions are treated

as separate domains.

5. Although the current algorithm has been imple-

mented with an interface tracking procedures using

curves and markers, it is possible to implement the

same with any interface capturing method that al-

lows sharp-interface shape calculations, such as the

level-set method [3,33,34]. Such hybrid methods

have been employed for dendritic solidification in

pure materials but have not yet been employed for

impure materials as in the present paper.

Computations of dendritic growth are fairly routine

nowadays and there are several approaches for obtain-

ing such solutions. The most widely used method is the

phase-field approach [30,32,35] and 3-D computations

[29] have been performed with this method. The method

has also been used to compute the solidification of im-

pure materials such as alloys [31,35]. The phase-field

method is inherently a diffuse interface method [36], i.e.

although the phase-field evolution equations reduce as-

ymptotically to the sharp-interface ones with decreasing

interface thickness, in practical implementation, the

solid–liquid interface is spread over a region occupying a

few mesh points. On the other hand, while the immersed

boundary method [37], applied to the dendritic growth

problem by Juric and Tryggvasson [1], tracks the inter-

face as a sharp entity over an Eulerian grid, the inter-

action of the interface with the underlying mesh is

accomplished through a numerical delta function which

redistributes singular sources (latent heat) and jumps

(material properties) onto the underlying mesh. Similar

to the immersed interface method [2], no smearing of the

interface results in the present method. It is found in the

calculations presented herein that the solute boundary

layers are extremely thin. Thus, unless very fine meshes

are used, spreading of the interface over even a few mesh

cells can lead the diffuse interface to occupy a region

comparable in extent to the solute boundary layer

thickness. Thus, a sharp treatment of the interface is

highly desirable in calculating the solidification of im-

pure materials. There has been some previous work in

applying sharp-interface numerical approaches to the

solution of the solidification problem for impure mate-

rials [38]. However, these utilized moving grid formu-

lations, which are required to deal with issues of mesh

quality, redefinition etc. when the interfaces become

highly convoluted. To the authors’ knowledge, this is the

first attempt at devising a sharp-interface Eulerian

methodology for the simulation of solidification in im-

pure materials.

2. Formulation

The thermal and solutal transport in the solid and

liquid phases are diffusion-driven and the following

transport equations are solved in each phase:

oT
ot

¼ al=sr2T ð1Þ

oC
ot

¼ Dl=sr2C ð2Þ

where T is the temperature, C is the solute concentra-

tion, a is the thermal and D is the solutal diffusivity.

Subscripts s and l denote the solid and liquid phases

respectively. These equations are solved with appropri-

ate boundary conditions at the edges of the computa-

tional domain as well as with the following conditions at

the advancing solidification front.

The Stefan condition provides conservation of heat

at the interface:

qlLVN ¼ ks
oT
on

� �
s

� kl
oT
on

� �
l

ð3Þ

where ql is the density of the liquid, L is the latent heat

of fusion, VN is the normal velocity of the front and ks
and kl are the thermal conductivities in the solid and

liquid phases respectively. The derivatives of the tem-

perature in the direction normal to the interface are
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implied above. Solute conservation at the interface is

given by Kurz and Fisher [39]:

ð1� kpÞCl;intVN ¼ Ds

oC
on

� �
s

� Dl

oC
on

� �
l

ð4Þ

kp is the solute partition coefficient. The interface tem-

perature and interface species concentration in the liquid

phase are related through the phase diagram (the liqui-

dus curve) and the capillarity effect. This relationship is

given by [40]:

Tl;int ¼ b0 þ b1Cl;int þ b2C2
l;int þ b3C3

l;int þ b4C4
l;int �

cslðhÞ
L

Tmj

ð5Þ

where csl is the solid–liquid interfacial tension, Tm is the

equilibrium melting temperature and j is the interface

curvature. The values of the constants b0–b4 are given in

Appendix A for the particular solution chosen here for

the numerical calculations [22]. Note that the interfacial

tension has a directional dependency, which imposes

crystalline anisotropy. A model for such anisotropy [29]

is included here, so that

cslðhÞ ¼ c0ð1� 15e cosðmhÞÞ ð6Þ

where h is the angle with respect to the horizontal, the

parameter e regulates the anisotropy strength and m the

symmetry characteristics (i.e. m ¼ 4 for fourfold sym-

metry and m ¼ 6 for sixfold cases computed later in

this paper). The equations are non-dimensionalized by

choosing the following scales: length scale ¼ X , a char-

acteristic length for the system, time scale ¼ X 2=Dl,

concentration scale ¼ c0, the initial solute concentra-

tion, temperature scale ¼ Tm, the equilibrium melting

temperature. The non-dimensional temperature is de-

fined to be H ¼ ðT � b0Þ=Tm and non-dimensional con-

centration c ¼ C=C0, where C0 is the concentration of

salt in the initial solution. The non-dimensionalized

equations are then written, as

Energy equation :
oH
ot

¼ Lel=sr2H ð7Þ

where Le is the Lewis number, Lel=s ¼ al=s=Dl.

Species equation :
ocs
ot

¼ Ds

Dl

r2cs ð8Þ

in the solid and

ocl
ot

¼ r2cl ð9Þ

in the liquid. The interface conditions become, in non-

dimensional form:

VN ¼ klTm
LDl

ks
kl

oH
on

� �
s

�
� oH

on

� �
l

�
ð10Þ

We define a Stefan number, St ¼ klTm=LDl ¼ 563:673 for

the values chosen (see Appendix A).

VN ¼ 1

ð1� kÞcl;int
Ds

Dl

oc
on

� �
s

�
� oc

on

� �
l

�
ð11Þ

and

H
l;int

¼ b1c0
Tm

cl;int þ
b2c20
Tm

c2l;int þ
b3c30
Tm

c3l;int þ
b4c40
Tm

c4l;int

� CðhÞj ð12Þ

3. The numerical method

3.1. Discrete form of the governing equations

The present method computes temperature and sol-

ute field on a fixed Cartesian mesh, while the solid–

liquid front evolves through the mesh. The interface is

tracked using markers connected by piecewise quadratic

curves parametrized by the arclength [5]. In Ye et al. [7]

we provided details regarding the interaction of the in-

terfaces with the underlying fixed Cartesian mesh. These

include obtaining locations where the interface cuts the

mesh, identifying phases in which the cell-centers lie, and

procedures for obtaining a consistent mosaic of control

volumes in the cells crossed by the immersed interface.

This results in the formation of control volumes near the

interface that are, in general, trapezoidal in shape (see

Fig. 2). A finite-volume discretization is then performed

over the regular Cartesian grid cells in the bulk of the

computational domain and a lower-dimensional set of

irregularly shaped cells that adjoin the interface.

The energy equation, Eq. (7), is written in semi-

discrete form as (note that the symbols here represent

non-dimensional quantities):Z
v

Hnþ1 � Hn

dt
dV ¼ Lei

2

I
ðrHnþ1 þrHnÞn̂ndS ð13Þ

The above Crank–Nicolson scheme provides nominal

second-order temporal accuracy. Spatial and temporal

discretization accuracy studies have been reported in Ye

et al. [7] and Udaykumar et al. [6,8]. The details of the

discretization scheme are also provided in those papers

and are only adumbrated here.

In discrete form Eq. (13) is written, for a control

volume in the Cartesian mesh indexed ði; jÞ as

DVij
dt

ðHnþ1
ij � Hn

ijÞ ¼
Lei
2

X5
f¼1

oH
on

nþ1�
þ oH

on

n �
f

DSf ð14Þ

In the above, n is the time level, DVij is the volume of the

cell indexed i, j and DSf is the area of the face of

the control volume (see Fig. 2). In Eq. (14) above the
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summation runs over the sides of the irregular-shaped

(four- or five-sided) control volumes. The finite-volume

discretization requires evaluation of the diffusive fluxes

at the faces of each control volume, viz.:

Fd ¼ rH �~nn ð15Þ

For a uniform Cartesian mesh, the fluxes on the face-

centers can be computed to second-order accuracy with

a linear profile for the temperature field between

neighboring cell-centers. This is not the case for a

trapezoidal boundary cell since the center of some of the

faces of such a cell may not lie halfway between neigh-

boring cell-centers. These fluxes are obtained using a

compact two-dimensional (2-D) polynomial interpolat-

ing function, described in Ye et al. [7], which allows us to

obtain a second-order accurate approximation of the

fluxes and gradients on the faces of the trapezoidal

boundary cells from available neighboring cell-center

values. This interpolation scheme coupled with the

finite-volume formulation guarantees that the accuracy

and conservation property of the underlying algorithm

is retained even in the presence of arbitrary-shaped im-

mersed boundaries. This has been demonstrated in Ye

et al. [7] for stationary immersed boundaries and in

Udaykumar et al. [8] for moving solid boundaries em-

bedded in flows. In Udaykumar et al. [6] we showed that

the solutions to the dendritic growth of pure materials

from the melt are in agreement with microscopic solv-

ability theory. The physically correct steady-state tip

characteristics are selected when the dendrites are grown

from seed crystals with arbitrary initial conditions.

In summary, the procedure for discretization above

enables the formulation of fluxes using the general

forms: gradients (for diffusive fluxes) at the non-inter-

facial sides of the control volume Ff ¼
P6

l¼1 blHl

	 

f

and gradients (for diffusive fluxes) at the interfacial sides

of the control volume Fint ¼
P9

l¼1 blHl

	 

int
.

In the above, subscript f stands for the face of the

control volume (faces 1–4, Fig. 2), and subscript ‘int’ for

the interfacial side (side 5, Fig. 2). Substitution of these

expressions in the Eq. (14) results in a general discrete

form:

Hnþ1
ij � Hn

ij

dt

 !
dVij ¼ Lei

X4
f¼1

1

2

X6
l¼1

blH
nþ1
l

 !
f

2
4

þ
X6
l¼1

blH
n
l

 !
f

3
5dSf

þ Lei
X9
l¼1

blHl

 !
int

dSint ð16Þ

which can be written as

Xlmax

l¼1

alH
nþ1
l ¼ SðHn;Hnþ1

int Þ ð17Þ

where the explicit terms, boundary and interface con-

tributions and the accompanying interpolation coeffi-

cients are absorbed in the source term Sð�Þ. The

summation runs over all the lmax computational points

that are included in the stencils for the cell-face flux

evaluations. The current computational point ði; jÞ is of
course also included in the lmax stencil points. In cells

away from the interface, as usual lmax ¼ 5, while for the

interfacial cells, 56 lmax 6 9, and depends on the inter-

face orientation and shape of the irregular cell [7,8]. Eq.

(17) is solved using a standard line-SOR procedure, with

alternate sweeps in the i- and j-directions with the

Fig. 2. Illustration of a moving boundary cutting through a fixed mesh. Cells traversed by the interface are called interfacial cells and

are trapezoidal in shape. Cells away from the interface are regular cells. The normal probe to obtain interface velocity is also shown.
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Thomas algorithm for the solution of the resulting tri-

diagonal matrix. The use of a regular Cartesian grid

allows for the use of these fast solution procedures.

The discretization of the solute diffusion equation in

the liquid and solid phases is performed in a manner

identical to that of the temperature field. Finally, since

the inside of the immersed boundary is treated in the

same manner as the outside, it is a straightforward

matter to entertain arbitrarily large jumps in transport

properties (without smoothing them) across the phase

boundary or even to solve a different set of equations

inside the immersed boundary. In this paper, we will use

this feature to compute the diffusion of heat and solute

with discontinuities in transport coefficients across the

solid–liquid interface.

3.2. Application of interfacial conditions

In the case of solidification of pure materials, the

application of the interfacial conditions is relatively

straightforward, since the interface temperature is given

by the Gibbs–Thompson condition and the interface

velocity is computed using the Stefan condition [6]. An

implicit scheme for the calculation of interface temper-

ature and position is necessary to perform the compu-

tations with reasonable time step sizes. Such a coupled

procedure is described in Udaykumar et al. [5]. In the

present case, the interfacial temperature, composition,

and velocity are coupled through the three equations

(10)–(12). All three must be simultaneously satisfied for

the case in which latent heat is not to be ignored. Note

that in the isothermal case, where the spatial distribution

of the temperature is uniform in the sample, only Eqs.

(11) and (12) are required, since the interface tempera-

ture will be known a priori. In that case, the equation set

to be solved is no different from the pure material case

except that the solute concentration takes the place of

temperature. Such an isothermal setting is closely ap-

proximated in cryobiology experiments on microscopic

samples of cell suspensions performed using laboratory

cryomicroscopy [9,19], but may not be applicable in

freezing of tissue components.

In the present general treatment of coupled heat and

solute transport, several approaches for applying the

interface conditions were explored and the following

method was deemed to be most suitable, within the

framework of an implicit interface update.

3.2.1. Interface velocity

The interface velocity is computed using Eq. (4). The

required concentration gradients in the liquid and solid

phases are computed using the normal probe technique

described in Udaykumar et al. [5]. We briefly describe

the procedure with the aid of Fig. 2. The values of solute

concentration at the nodes of the normal probe, spaced

at equal distances dx (the mesh spacing) along the

probe, are determined by bilinear averaging from the

surrounding computational points. Thus, the gradients

in the liquid phases are evaluated from:

oc
on

� �
l

¼ 4cl1 � cl2 � 3cl;int
2dx

ð18Þ

where subscripts l1 and l2 imply evaluations of con-

centration at the two nodes on the normal probe and

subscript int implies the value on the interface. Similar

evaluation of concentration gradient is performed in the

solid phase. Having calculated the concentration gradi-

ents in each phase using Eq. (18), the interface velocities

are computed at the markers using Eq. (11).

3.2.2. Interface temperature

Once the velocity is computed, the interface temper-

ature is obtained using Eq. (10). Thus, in the following

interface condition:

VN ¼ St
ks
kl

oH
on

� �
s

�
� oH

on

� �
l

�
ð19Þ

VN is treated as known and the interface temperature is

computed, with Hl;int ¼ Hs;int. To calculate the temper-

ature gradient at the interface oH=on with an Oðdx2Þ
error, we use the values of temperature at two points

along the normal probe.

In the liquid, the temperature values at the two points

along the normal probe are denoted Hl1 and Hl2 re-

spectively, and are obtained by bilinear interpolation

from the surrounding grid nodes. Let the distance of

these two points on the normal probe be dxl1 (¼ dx, the
grid size) and dxl2 (¼ 2dx) respectively from the inter-

facial marker where the temperature is to be computed.

A Taylor series expansion about the interfacial point

gives

Hl1 ¼ Hl;int þ
oH
on

� �
l

dxl1 þ
o2H
on2

� �
l

ðdxl1Þ
2!

2

þO dx3l1
� �

ð20Þ

Hl2 ¼ Hl;int þ
oH
on

� �
l

dxl2 þ
o2H
on2

� �
l

ðdxl2Þ
2!

2

þO dx3l2
� �

ð21Þ

From the above equations, we get the second-order

approximation:

oH
on

� �
l

¼
dx2l2Hl1 � dx2l1Hl2 � dx2l2 � dx2l1

� �
Hl;int

dxl1dx2l2 � dx2l1dxl2
ð22Þ

which may be written as

oH
on

� �
l

¼ al1Hl1 þ al2Hl2 þ aliHl;int ð23Þ

The gradient in the solid can be similarly obtained.
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Thus, Eq. (19) becomes, with the fact that Hl;int ¼
Hs;int, i.e. continuity of temperature at the interface:

VN ¼ St
ks
kl
ðas1Hs1

�
þ as2Hs2 þ as;intHl;intÞ � ðal1Hl1

þ al2Hl2 þ al;intHl;intÞ
�

ð24Þ

Since the interface velocity has been determined from

Eq. (11) above, inversion of Eq. (24) provides the in-

terface temperature:

Hl;int ¼

VN
St

� ks
kl
ðas1Hs1 þ as2Hs2Þ þ ðal1Hl1 þ al2Hl2Þ

ks
kl
as;int � al;int

ð25Þ
3.2.3. Interface composition

Next, the interface composition on the liquid side of

the interface is obtained from Eq. (12), using the above

determined value of the interface temperature. The non-

linear equation for cLi is solved using a Newton method

using

b1cl;int þ b2c2l;int þ b3c3l;int þ b4c4l;int ¼ Hl;int þ
cslðhÞ
L

Hmj

ð26Þ

The composition on the solid side is then given by the

partition coefficient:

cs;int ¼ kpcl;int ð27Þ

Once the interface values are obtained, the interfacial

markers are advected to new positions in order to evolve

the interface in time. Once the interface has moved to its

new position, the interface markers are redistributed at

uniform arclength spacing ds ¼ OðdxÞ, where dx is the

local grid spacing. Points are added or deleted on the

interface as necessary to maintain adequate interface

resolution. The normal and curvature at the interfacial

markers are computed as described in Udaykumar et al.

[5]. The curvature j and orientation h (¼ tan�1ðny=nxÞ)
are then used in applying the boundary condition, via

Eq. (12) in solving the governing equations in the next

iteration.

3.3. Overall solution procedure

For curvature-driven growth problems, stability of

the interface update requires an implicit coupled pro-

cedure for obtaining the field solution [33,41] and the

interface position simultaneously at time level tnþ1. In

the absence of such an implicit, coupled treatment of the

field solution and interface evolution, the calculations

can become very stiff. The stability restriction on an

explicit scheme can be very severe (dt ¼ Oðdx3Þ) as

demonstrated by Hou et al. [33].

Furthermore, as described in Section 3.2, the inter-

facial conditions in the present case couple the interface

position (and curvature), temperature and composition.

An implicit procedure similar to that employed in

Udaykumar et al. [5] is used in the present work. The

overall solution procedure with boundary motion is as

follows:

1. Advance to time t ¼ t þ dt. Iteration counter k ¼ 0.

2. Augment iteration counter, k ¼ k þ 1.

3. Determine the intersection of the immersed bound-

ary with the Cartesian mesh.

4. Using this information, reshape the boundary cells.

5. For each reshaped boundary cell, compute and store

the coefficients appearing in discrete form, Eq. (17).

6. Get Hl;int from VN using Eq. (25).

7. Get cl;int from Hl;int using Eq. (26).

8. Advance the discretized equations in time. Compute

the temperature and composition fields using the

boundary conditions in steps 6 and 7 above.

9. Get VN using Eq. (11). Advance the interface posi-

tion in time.

10. Check whether the temperature field and inter-

face have converged. Convergence is declared if

max jT k
ij � T k�1

ij j < eT , max jckij � ck�1
ij j < ec and max

jX k
int � X k�1

int j < eI where k is the iteration number

and �’s are convergence tolerances set in each case

to 10�5 in the calculations so that the solution ob-

tained is independent of the convergence criterion.

11. If not converged, go to step 2 for next iteration. If

converged, go to step 1 for next time step.

Typically, after the initial transients have settled, less

than five iterations are required for convergence since

the previous time step solution provides an excellent

guess to the solution at the current step. Note that with

this implicit iterative approach stable computations of

interface evolution can be performed with time step sizes

that are controlled by a CFL-type criterion of the form

dt ¼ kdx=maxðVInterfaceÞ, where k is set to 0.1 in the cal-

culations performed.

4. Results

4.1. Planar (1-D) calculations

We first compute the evolution of a planar solidifi-

cation front under the boundary conditions described

above. This 1-D case was solved using a coordinate

system fixed at the advancing front by Wollhover et al.

[23]. They obtained numerical (finite-difference) solu-

tions for the temperature and solute fields ahead of the

front. We have computed the cases in Wollhover et al.

and find good agreement with their results. A schematic

of the setup for the 1-D calculations is shown in Fig. 3(a).
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The temperature at the left wall (at the boundary of

the solid) is decreased in time at a constant specified

cooling rate. The range of cooling rates investigated in

the following is typical of the rates employed in cryo-

protocols. The right wall is treated as an adiabatic

boundary. The solid–liquid front then advances in the

þx direction.

Two typical cases are shown in Figs. 4 and 5. The

cooling rate in Fig. 4 is B ¼ �0:05. This is the lowest

cooling rate computed. Fig. 4(a) shows the temperature

field at various instants of time as the front advances to

the right. As can be seen, at this low cooling rate, the

temperature field has only mild variations in space due to

the large thermal diffusivity. However, the solute is seg-

regated into the solution as the ice forms and a solute

boundary layer progressively accumulates ahead of the

front. The solute layer steepens as time progresses since

almost pure ice forms upon solidification. For this

growth configuration there is a region of constitutionally

supercooled solution in front of the ice–liquid boundary

as shown in Fig. 4(c). The constitutional supercooling

was computed as the difference between the equilibrium

freezing temperature obtained from the local composi-

tion via Eq. (12), and the actual temperature at that

Fig. 3. Schematic of computational setup for (a)1-D and (b) 2-D solidification calculations. The fine mesh region and the boundary

conditions are shown.

Fig. 4. 1-D solidification calculations of an aqueous solution for a cool rate of B ¼ �0:05 K/s. (a) Temperature field in the liquid and

solid phases at time intervals of 40 s. The time instants are numbered in sequence. (b) Species concentration in the solid and liquid

phases. (c) Constitutional supercooling in the liquid phase ahead of the front.
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point. The results shown in Fig. 4(a)–(c) are in excellent

agreement (see Fig. 6 for a quantitative comparison) with

those in Wollhover et al. [23]. It is to be noted that the

present sharp-interface method captures the solute

buildup on the liquid side of the interface as a disconti-

nuity and also treats the diffusivity jump between

the solid and liquid as a jump discontinuity. Thus, in the

calculations performed here, the salt is rejected into the

remaining solution entirely while nearly pure solid (ice)

forms.

In Fig. 5, we show the results for planar front

propagation for the largest cooling rate calculated, i.e.

B ¼ �1:0, a cooling rate 20 times higher than in the

previous case. For this large cooling rate, the tempera-

ture field in the solid and liquid display very different

gradients, even though the thermal diffusivity is large.

The discontinuity in the slope of the temperature profile

at the interface is clearly seen. The velocity of the in-

terface computed from Eq. (11) is therefore very high for

this case. This leads to a very steep solute boundary

layer in front of the solid–liquid boundary. There is also

a progressively deepening region of constitutionally su-

percooled liquid ahead of the ice front. The front under

such circumstances would be expected to become un-

stable via the Mullins–Sekerka mechanism and therefore

the ice front will typically advance in a cellular/dendritic

manner as observed by Koerber et al. [22].

The interface location for various cooling rates is

plotted against time in Fig. 6(a). These curves were

produced to compare with identical curves in Wollhover

et al. [23]. In Fig. 6(a), the solid lines are curves obtained

by the present method, while the dotted lines are those in

Wollhover et al. There is close agreement between the

results. We have also established that the results pre-

sented in the figure are grid independent. In Fig. 6(b) we

show the interface temperature and in Fig. 6(c) the in-

terface species concentrations in time as the solidifica-

tion front advances. The results for three different mesh

spacings (40, 80 and 120 mesh points respectively) are

shown in the figures. Unlike Wollhover et al., who use

initial conditions that are a continuation of semi-

analytical results, the initial conditions are somewhat

arbitrary in our case (a uniform concentration field

corresponding to the initial solution concentrations is

specified and the interface temperature is taken to be the

equilibrium value). The initial transients appear to dis-

place the coarsest mesh solution somewhat far from the

two finer mesh cases. The two fine mesh solutions are

almost indistinguishable from each other, unless ampli-

fied as in the inset. Furthermore, for the coarsest mesh,

the crossing of the interface across the mesh points gives

rise to small periodic excursions in the interface tem-

perature value, while for the finer meshes the solution

progresses smoothly.

4.2. Two-dimensional calculations

The dendritic growth of crystals coupled with the

transport of heat and solute was computed for a range

of physical parameters. The cases were designed to

Fig. 5. 1-D solidification calculations of an aqueous solution for a cool rate of B ¼ �1:0 K/s. (a) Temperature field in the liquid and

solid phases at time intervals of 5 s. The time instants are numbered in sequence. (b) Species concentration in the solid and liquid

phases. (c) Constitutional supercooling in the liquid phase ahead of the front.
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demonstrate the capability of the present sharp-interface

technique to compute the large distortions of the phase

boundary, while maintaining explicit information on

the interface shape and discontinuities in the material

properties and solute fields across the boundary. This

method was shown in Udaykumar et al. [8] to compute

the pure material dendritic growth accurately and to

agree with theoretical predictions, based on microscopic

solvability theory [40]. Here we show that the results

display the correct physically expected trends as the

growth parameters are varied.

A schematic of the computational setup is shown in

Fig. 3(b). Typical theoretical treatment, approximating

some experimental protocols of the freezing process in

the cryopreserving solutions, assume that the tempera-

ture is spatially uniform but temporally varying [10,

14,16,18], the so-called isothermal model. We include

heat transport, in order to make the simulations com-

pletely general and because in reality, thermal gradients

are unavoidable in the putative isothermal experiments

unless the latent heat is removed very rapidly, and ther-

mal gradients are inherent in directional solidification

experiments in cryotreatment [19]. Thus, the isothermal

model can be treated as a special case of the calculations

to be performed here. This requires the full coupling of

the interface temperature, composition and velocity

through the interface conditions, Eqs. (10)–(12). The

Stefan number is very large in the following simulations

(St ¼ 563:673), thus rendering the temperature gradients

shallow in the domain as will be shown in results later.

Furthermore, the thermal diffusivity being much larger

than species diffusivity, diffusional solute transport away

from the interface controls the progress of the solidifi-

cation front. In the calculations presented, the tempera-

Fig. 6. Test of accuracy of the 1-D computations. (a) Plot of interface position against time. The solid line is the trajectory computed

from the present calculation. The dotted line is the result from Koerber et al. (b) Time variation of the interface temperature for the

cooling rate value of B ¼ �1:0 K/s. The finest grid is labeled 1 and the coarsest grid is labeled 3. (c) The interface concentration

computed for the three meshes for the case of B ¼ �1:0 K/s.
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ture at the edges of the computational domain is varied in

time according to the required cooling rate. The species

gradients are set to zero at the edges. Thus

HðxoX; yoX; tÞ ¼ H0 þ Bt ð28Þ

o

on
cðxoX; yoX; tÞ ¼ 0 ð29Þ

where B is the cooling rate and subscript oX indicates

points on the edges of the domain. The initial conditions

for these cases were specified as follows:

Hðx; y; 0Þ ¼ H0; clðx; y; tÞ ¼ c0; csðx; y; tÞ ¼ kpc0

In Fig. 7 we show the development of the interface for a

case with sixfold anisotropy. The domain size is 10	 10

units and the fine grid region occupies the region be-

tween x ¼ 3–7 and y ¼ 3–7. The number of grid points

in each direction in the fine grid region is 500, thus

dx ¼ 0:008. The cool rate imposed on the edge is

B ¼ �0:1. Other parameters specified are C ¼ 10�4, a

non-dimensional value appropriate for water as the

freezing material, and e ¼ 0:05. An initially placed small

circular seed is allowed to grow and the development of

the unstable front is shown at different instants of time

in Fig. 7(a). The circular seed develops perturbations in

Fig. 7. Growth of a sixfold symmetric crystal from a circular seed. The capillary parameter C ¼, anisotropy strength ¼ 0:5, cooling

rate B ¼ �0:1. (a) Shapes of the crystal at various time instants, (b) species concentration in the computational domain, (c) temperature

contours in the domain, (d) close-up of species concentrations around the crystal and (e) close-up of the temperature field around the

crystal.
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the initial stage of the growth to form a hexagonal

morphology aligned with the preferred growth direc-

tions. These perturbations then grow into primary den-

dritic branches. The solute progressively accumulates in

the grooves between the branches. This microsegrega-

tion within the thin solute boundary layer is shown in

Fig. 7(b). The temperature field is shown in Fig. 7(c) at

the same instant in the growth as in Fig. 7(b). The

thermal boundary layer is seen to be much wider than

the solute boundary layer. In Fig. 7(d) and (e), we show

close-up views of the solutal and thermal fields near a

branch of the growing crystal. The large gradients of

solute and the comparatively higher gradients of the

temperature field in the vicinity of the growing tip are

clearly seen in these figures. Also, the values of the

contours indicated show that the solute accumulation in

the grooves is higher than at the tip of the dendrite.

Thus, in terms of the effect on cryopreservation, the cells

that find themselves in the grooves between dendritic

arms will experience more hypertonic environments

relative to those that find themselves near the tip of the

dendrite. Furthermore, Fig. 7(a) shows that the grooves

are nearly stationary in the later stages of the growth of

the crystal, while the tip grows rapidly. Thus, cells that

are located near the grooves are likely to find themselves

in a pool rich in salt for longer durations than those that

are approached and engulfed by the tip. These facts

impact significantly on the survival of the cells, as shown

experimentally by cryobiological experiments [11,42]

and indicate the importance of obtaining the temporal

and spatial distribution of solute in predicting the fates

of cells in ice-cell interactions.

In Fig. 8 we compute the development of a fourfold

symmetric crystal, other parameters remaining the same

as in Fig. 7. Again, the growth proceeds from an initial

circular seed crystal. The dendrite primary arms form

with parabolic tips of high curvature. Fig. 8(b) and (c)

show the solute concentration and temperature contours

around the growing crystal. In Fig. 9(a) we show the

development of a crystal with identical growth condi-

tions to Fig. 8(a), except that the anisotropy in this case

is lowered to e ¼ 0:01. Comparison of Figs. 8(a) and 9(a)

indicates that when the crystals have grown to nearly the

same overall size, the tip curvature for the high aniso-

tropy crystal is much higher than for the low anisotropy

crystal. Also the species and thermal boundary layers in

the latter case are shallower than for the previous high

anisotropy case. The tip velocities in the high anisotropy

case are also higher than that of the low anisotropy case.

This fact would have implications for cells in cryopre-

Fig. 8. Growth of fourfold symmetric crystal for the cooling rate of B ¼ �0:1. The anisotropy strength e ¼ 0:05 (high value). (a)

Crystal shapes are various times during the growth, (b) species concentrations around the crystal and (c) temperature field around the

crystal.
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servation, not only in terms of the compositional field

and engulfment velocity experienced by the cell during

its interaction with the ice, but also in mechanical in-

teractions of the ice crystals with the cells [20,43].

In Fig. 10(a) and (b), we have considered the effect

of the cooling rate on the growth of a fourfold sym-

metric crystal, whose growth axis has been rotated by

45� from the horizontal. We imposed this rotation of

the growth direction to demonstrate that grid aniso-

tropy does not impact negatively on the calculations.

Such tests were previously performed for the pure den-

drite cases in Udaykumar et al. [5]. The crystal grows

with the expected fourfold symmetry without any traces

of the grid-induced noise or anisotropy. In general, the

manifestation of grid-induced effects is dependent on

the growth conditions (supercooling, surface tension,

Fig. 9. Growth of fourfold symmetric crystal for the cooling rate of B ¼ �0:1. The anisotropy strength e ¼ 0:01 (low value). (a) Crystal

shapes are various times during the growth, (b) species concentrations around the crystal and (c) temperature field around the crystal.

Fig. 10. Growth of fourfold symmetric crystal from the solution for a specified anisotropy strength of e ¼ 0:01: (a) for a low cooling

rate of B ¼ �0:01 and (b) for a high cooling rate of B ¼ �0:1.
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anisotropy value etc.). In contrast to Fig. 8, the aniso-

tropy strength here is low, e ¼ 0:01. In Fig. 10(a), the

cooling rate is the low value, i.e. B ¼ �0:01. Here the

crystal grows with fairly large tip radius. In Fig. 10(b),

the cooling rate is the higher value, B ¼ �0:1. The

crystal assumes a more angular morphology in this case

as compared to Fig. 10(a). In the final stages of growth

the tip appears to show the development of instabilities

that begin to assume the form of sidebranches. This

behaviour and the noticeable asymmetry in this incipient

breakdown is due to the lack of sufficient grid resolution

to fully and accurately capture the tip dynamics in this

stage. As observed previously [6], for dendrite tips that

are driven to grow with higher velocities and smaller

radii, the tip sensitivity to grid-induced noise is higher,

and this tends to perturb the tip causing it to become

sensitive and unstable to numerically generated pertur-

bations. The sensitivity in Fig. 10(b) is exacerbated by

the high cooling rate, which renders the tip sharper than

that in Fig. 10(a) and thus less well resolved by the mesh

provided. Real crystal tips of course are correspondingly

sensitive to noise and generate sidebranches under suf-

ficiently strong perturbation. It is possible to introduce

controlled noise to initiate more regular side-branching

events instead of relying on numerical noise [44],

although the precise characteristics of ‘‘real’’ noise in

experimental dendritic growth systems is difficult to

estimate.

In Fig. 11 we show the long-time evolution of a

dendritic crystal from the impure medium. The elon-

gated domain of 2	 10 units is shown in the figure. In

this case symmetry conditions on both the temperature

and solute fields were imposed on the left, right and

bottom sides of the domain. At the top of the domain

the temperature was specified based on the cool rate

B ¼ �0:1 and the zero-gradient condition was imposed

on the species field. The growth of the crystal starting

from the initial circular seed is shown in Fig. 11(a). The

imposed fourfold symmetry (e ¼ 0:05) causes the crystal
to grow rapidly in the preferred growth directions.

However, as the thermal and solute boundary layers are

confined by the symmetric sides of the domain, i.e. the

latent heat and solute accumulate at the sides, only the

arm of the crystal directed upward continues to grow

freely. The tip of the crystal assumes a parabolic shape

that subsequently becomes unstable and generates side-

branches, which in turn grow in the preferred horizontal

direction. The sidebranches are again generated due to

numerically induced noise and thus slight asymmetries

in the final dendritic crystal are noticeable. The solute

field surrounding the dendrite in the late stages is shown

in Fig. 11(b). The very high concentrations in the

grooves between the sidebranches may be noted. The

bulk concentration value in the liquid is 1.30, the value

at the tip of the dendritic arm is 4.53, while the con-

centration value in the first groove behind the tip is

11.00. In Fig. 11(a) it can be seen that these solute-rich

grooves once formed solidify only very slowly. The

corresponding temperature field is shown in Fig. 11(c)

and for the high Stefan number and thermal diffusivity

used the thermal field displays only shallow gradients.

5. Summary

We have developed a numerical technique for

tracking the evolution of freeze fronts in the presence of

heat and solute transport at the microscale. The ice front

is captured as a sharp solid–liquid interface in both the

1-D and planar cases. Our interest is in the computation

of dendritic solidification of aqueous salt solutions used

in cryopreservation of cells and tissue. In such systems

the solute is rejected completely into the solution, with

nearly pure ice formed as the solidification proceeds. We

have compared our results with the simulations of

Koerber and coworkers in the 1-D solidification case.

However, we show that for the solidification conditions

imposed in the 1-D test cases, the solute ahead of the

Fig. 11. Growth of fourfold symmetric crystal for the high

cooling rate of B ¼ �0:1. The anisotropy strength e ¼ 0:05

(high value). (a) Crystal shapes are various times during the

growth, (b) species concentrations around the crystal and (c)

temperature field around the crystal.
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front is constitutionally supercooled. The planar front

then suffers instability to assume cellular and dendritic

forms. The present method has been shown to be ca-

pable of simulating the non-planar freezing of the so-

lution. Although the primary goal of this paper was to

present a numerical technique for capturing sharp in-

terfaces in growth of impure materials (such as solutions

and alloys), some preliminary insights into the physics

of cyropreservation have been obtained. A cell that is

immersed in such a medium during cryopreservation is

exposed to an advancing ice front and the accompanying

microsegregated solute boundary layer. This effect is

typically ignored in simplified analytical studies of ice-

cell interaction where the segregation of solute both at

the cell boundary as well as the ice boundary is neglected

and the medium is supposed homogeneous. However,

the thermo-solutal environments experiences by cells in

suspension in a salt solution are indeed inhomogeneous.

Precise knowledge of the spatio-temporal variations of

solutes and their interactions with cells will aid in better

understanding, quantifying and predicting cell viability

in freeze-thaw protocols. The application of the present

method to the study of cell response to freezing is on-

going and is expected to advance quantitative analysis of

cryopreservation effects on cells.
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Appendix A

The parameters employed in the calculations are the

same as those of Koerber et al. [22]: concentration scale:

c0 ¼ 0:1548 mol l�1, thermal diffusivity of liquid: al ¼
0:115 mm2 s�1, thermal diffusivity of solid: as ¼ 1:364
mm2 s�1, diffusivity of NaCl in liquid: Dl ¼ 7:8	 10�4

mm2 s�1, diffusivity of NaCl in solid: Ds ¼ 7:8	 10�7

mm2 s�1, latent heat of fusion: L ¼ 0:333 Jmm�3,

equilibrium freezing point: Tm ¼ 273:15 K, partition

coefficient: k ¼ ðcLiÞs=ðcLiÞl ¼ 1:00	 10�3, thermal con-

ductivity of liquid: kl ¼ 5:36	 10�4 Jmm�1 s�1 K�1,

thermal conductivity of solid: ks ¼ 2:34	 10�3 Jmm�1

s�1 K�1.

Coefficients in the phase diagram:

TLi ¼ b0 þ b1cLi þ b2c2Li þ b3c3Li þ b4c4Li

b0 ¼ 273:15 K, b1 ¼ �3:362 K lmol�1, b2 ¼ �0:0414
K l2 mol�2, b3 ¼ �0:0404 K l3 mol�3, b4 ¼ �6:616	 10�4

K l4 mol�4.
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